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Abstract—In movies, film stars portray another identity or
obfuscate their identity with the help of silicone/latex masks.
Such realistic masks are now easily available and are used for
entertainment purposes; however, their usage in criminal activ-
ities to deceive law enforcement and automatic face recognition
systems is also plausible. Therefore, it is important to guard
biometrics systems against such realistic presentation attacks.
This paper introduces the first-of-its-kind Silicone Mask Attack
Database (SMAD) which contains 130 real and attacked videos
to facilitate research in developing presentation attack detection
algorithms for this challenging scenario. Along with silicone
mask, there are several other presentation attack instruments
that are explored in literature. The next contribution of this
research is a novel multilevel deep dictionary learning based
presentation attack detection algorithm that can discern different
kinds of attacks. An efficient greedy layer by layer training
approach is formulated to learn the deep dictionaries followed
by SVM to classify an input sample as genuine or attacked.
Experimental are performed on the proposed SMAD database,
some samples with real world silicone mask attacks, and four
existing presentation attack databases namely, Replay-Attack,
CASIA-FASD, 3DMAD and UVAD. The results show that the
proposed algorithm yields better performance compared to state-
of-the-art algorithms, in both intra-database and cross-database
experiments.

Index Terms—Face recognition, silicone mask, presentation
attack detection, deep dictionary.

I. INTRODUCTION

In the Hollywood movie Mission Impossible, Ethan Hunt
wears silicone/latex mask to impersonate someone else’s iden-
tity. Similarly, as shown in Fig. 1, the images from the movie
Mrs. Doubtfire showcase the problem of concealing one’s
identity using realistic masks [1]. These masks are akin to real
human faces, i.e. shape, texture, and appearance of these masks
are similar to a human face (Fig. 2). The ease of availability of
the silicone masks (for around $500), have led people to use
them for recreational purposes. However, such masks can also
be used for crime and wrongdoing. As early as 2010, cases
of bank robberies have been reported where robbers conceal
their identities using silicone masks, thereby leading the police
to search for the wrong person [2]–[6]. Fig. 3 shows two
examples of actual images of subjects caught on the camera
during the robberies. These instances show that silicone facial
masks can be used for presentation attack [7] which includes
both, concealing one’s identity and impersonating someone
else’s identity.
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Fig. 1: Robin Williams as Mrs. Doubtfire showcasing the effect
of realistic masks. Images are obtained from Internet.

Fig. 2: A sample of silicone mask and a person wearing it.
Images are obtained from Internet.

Fig. 3: Images of robbers without (first, third) and with
(second, fourth) using masks to conceal their identity. Images
are obtained from Internet.

Unlike already studied face presentation attack instruments
such as print and replay devices [8]–[11] and hard 3D face
masks [12]–[14], it is challenging to distinguish between a
real sample and a sample where a person wears silicone
masks. The algorithms used for presentation attack detection
(PAD) generally rely on domain knowledge. Many algorithms
utilize features which may be heavily pertinent to the kind of
attack being detected, for instance, motion [15]–[21], texture
[22]–[25], reflectance properties [26], [27], or image quality
[28]. As much as a counter-measure algorithm depends on
particular characteristics for its operation, the less is its gen-
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Fig. 4: Sample frames of videos from the proposed database. The first four columns illustrate frames with silicone masks and
hence belonging to the attacked class, while the frames of the next four columns belong to the genuine class.

eralizability across different attacks. Furthermore, the existing
publicly available datasets are either captured in constrained
sensing environments [8], [10] or semi-constrained sensing
environments [11], [29]. Given the ultimate application of
face biometrics in unconstrained environments, it is important
to design presentation attack detection algorithms that are
independent of the attack and environment.

With this motivation, we present an automatic feature
learning technique through multilevel deep dictionaries for
detecting face presentation attacks. The contributions of this
paper can be summarized as follows:

• A Silicone Mask Attack Database (SMAD) is prepared
which will be shared with the research community. The
database has been compiled from online resources and
consists of videos of people wearing silicone masks,
along with genuine access videos. The videos have been
captured in varied environments including unconstrained
settings.

• A multilevel deep dictionary based face presentation at-
tack detection algorithm is proposed. The feature learning
is independent of any knowledge of attack types and does
not seek to exploit any particular distinguishing attributes.
In different layers, it encodes low to high level features
of the presented samples and classification is performed
using Support Vector Machine (SVM) classifier.

• The performance of the proposed algorithm is demon-
strated on the SMAD, 3DMAD [12], CASIA-FASD [11],
UVAD [29], and replay-attack database [10]. Both intra-
database and cross-database experiments are performed
to demonstrate the effectiveness and generalizability of
the proposed algorithm across different kinds of attacks.
We also compare the performance with existing state-of-
the-art presentation attack detection algorithms.

II. SILICONE MASK ATTACK DATABASE

The Silicone Mask Attack Database consists of face videos
with and without masks. The attack samples consist of a per-
son wearing a real life silicone mask. The mask is a complete
3D structure to be worn around the head which fits well with
proper holes for the eyes and mouth avoiding irregularities at
these regions, such as in the print attacks. Some silicone masks
also include hair, mustache, and beard for life-like impression.
The silicone material is stretchable allowing the individual
to speak and perform blink movements near the mouth and
eye regions. The genuine videos are of people auditioning,
interviewing, or hosting shows. Since the genuine videos in
the database are also compiled from multiple sources, they
introduce several important challenges such as illumination,
background, distance from the camera, and capture quality.
Fig. 4 shows sample frames of both classes - genuine and
attack. Existing presentation attack databases generally contain
both genuine and attacked samples of the person imperson-
ating and the individual being impersonated. This allows the
researchers to evaluate the effect of presentation attack on face
recognition - both for evading and impersonating identity -
along with designing attack detection algorithms. Since tailor
made silicone masks are very expensive, the proposed SMAD
does not contain the videos of the person whose identity is
being impersonated.

The database comprises 130 videos, 65 genuine and 65
with mask. In most of the cases, the original videos are quite
lengthy. However, in real world applications, the available
videos may be of a very small duration. Therefore, sample
videos in the database have been clipped to 3− 10 seconds to
present enough data for designing attack detection algorithms
while ensuring near frontal head pose of the subjects. The
database consists of total 27, 897 frames with an average of
214 frames per video. Table I compares the characteristics of
SMAD with four existing databases, namely Replay attack
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TABLE I: Comparison of the face presentation attack databases used in this research.

Replay Attack [10] 3DMAD [12] CASIA-FASD [11] UVAD [29] SMAD
Subjects 50 17 50 404 -
Videos 1200 255 650 17,076 130

Protocol Train, development,
and test sets

Leave one
subject out Train and test sets Train and test sets 5-fold cross-validation

Characteristics 2D print, replay;
controlled environment

Hard resin masks;
controlled environment

Quality; warped
video and cut-photo

2D replay; indoor
and outdoor

Real life silicone masks; varying
lighting and background

TABLE II: Details of the Silicone Mask Attack Database.

Genuine Attack Total
Male 43 59 102

Female 22 6 28
Frames 15,901 11,996 27,897
Videos 65 65 130

[10], 3DMAD [12], CASIA-FASD [11], and UVAD [29].
Table II provides the finer statistics of the database in terms
of frames, videos, male and female.

We postulate that the algorithms designed to detect presen-
tation attack attempts in videos captured in such uncontrolled
settings would significantly benefit the face recognition ap-
plications. Additionally, attack attempts through the silicone
masks dismiss the possibilities of PAD algorithms seeking
to exploit any particular distinguishing characteristic such
as flat structure, visible borders, movements, or illumination
properties.

The database will be made publicly available via http://iab-
rubric.org/resources.html. We next present the experimental
protocol and the performance measurement metrics for bench-
marking and reporting results on the Silicone Mask Attack
Database.

A. Experimental Protocol on SMAD

Videos from each class are equally distributed in five non-
overlapping folds. In each iteration, three folds are used for
training the PAD algorithm while the other two are used as
the test set. The training folds can be used for parameter
optimization and as validation or development set. This train-
test split is randomly repeated five times for cross validation
and performance evaluation. Along with the database, these
five splits will also be released to the research community.

To demonstrate the performance of presentation attack de-
tection algorithms, this study proposes two protocols: frame-
based and video-based. The performance obtained by clas-
sifying all the individual frames as genuine or attacked is
referred to as the frame based approach, while the video based
approach classifies entire video samples into two classes.

B. Performance Measure

A presentation attack detection algorithm provides a mea-
sure of how likely a biometric sample is genuine or attacked.
Depending on the type of application, the performance criteria
and thresholds may change. For a very secure facility, the
users may not want to allow any attacked sample whereas, for

time and attendance systems, some level of attacks could be
acceptable in lieu of less discomfort to the users. Therefore,
we present the baseline results in terms of Equal Error Rate
(EER), Half Total Error Rate (HTER) and Receiver Operating
Characteristic (ROC) curves. Number of false accepts (accept-
ing an attacked sample as genuine) and false rejects (rejecting
a genuine sample as attacked) are calculated for different
thresholds and the variation of false reject rate (FRR) with
false accept rate (FAR) is visualized using ROC curves1. The
EER represents the point along the ROC where the FAR equals
the FRR. HTER, a popularly used metric in the PAD literature,
combines both FAR and FRR by computing their average at
a threshold obtained using the training and/or validation set,
and the results are reported on the test set.

III. PROPOSED DEEP DICTIONARY VIA GREEDY
LEARNING FOR PRESENTATION ATTACK DETECTION

Existing presentation attack detection algorithms for face
are generally based on either hand-crafted features or deep
neural network architectures. The challenge with hand-crafted
texture features is that it is difficult for one feature to encode
the variations across multiple kinds of presentation attacks. On
the other hand, deep network based learnt features provide
good generalization, but they require significantly large and
representative training database. Therefore, in this research,
we propose deep dictionary via greedy learning algorithm
(DDGL) for face presentation attack detection. We first briefly
provide the preliminaries and review of dictionary learning
algorithms followed by the formulation of DDGL algorithm.

A. Dictionary Learning: Preliminaries

Dictionary learning has been well studied for both com-
pressive sensing and feature representation [31]–[33]. The
traditional interpretation of dictionary learning is as follows:
It learns a basis (D) and coefficients (Z) for representing
the data (X). The columns of D are called ‘atoms’. The
basic formulation for dictionary is shown in Equation (1). The
dictionary is learnt so that the coefficients (features) - along
with the dictionary - can synthesize/generate the data. The
network directed from representation to the input is called
synthesis learning in signal processing. Dictionary learning
employs an Euclidean cost function (1) [34], given by

min
D,Z
||X −DZ||2F (1)

1ROC curves for cross validation are computed with threshold averaging
[30].

http://iab-rubric.org/resources.html
http://iab-rubric.org/resources.html
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Earlier, it was termed as ‘matrix factorization’ as dictionary
learning represents the data (X) as a product of two matrices
(D and Z). The method of optimal directions [35] was used to
solve (1). It is basically an alternating minimization algorithm
where the representation (Z) is updated assuming that the
dictionary (D) is given (Equation 2); and then solves for D
assuming Z is fixed (Equation 3).

Zk ← min
Z
||X −Dk−1Z||2F (2)

Dk ← min
D
||X −DZk||2F (3)

Dictionary learning/matrix factorization is a bi-linear non-
convex problem. However, each of the sub-problems (2/3) are
convex. The sub-problems are solved iteratively until local
convergence.

Since the advent of compressed sensing [31], [36], re-
searchers in signal processing and machine learning are in-
terested in solving the dictionary for sparse coefficients. Most
studies now impose an additional sparsity constraint on the
representation (Z) [37], but it is not mandatory. The K-SVD
[32] is probably the most well known technique for solving
this problem; it is formulated as,

min
D,Z
||X −DZ||2F such that ||Z||0 ≤ τ (4)

K-SVD proceeds in two stages: in the first stage it learns the
dictionary and in the next stage it uses the learned dictionary to
sparsely represent the data. Solving the l0-norm minimization
problem is NP hard [38]. K-SVD employs the greedy (sub-
optimal) orthogonal matching pursuit (OMP) [39] to solve the
l0-norm minimization problem approximately. In the dictio-
nary learning stage, K-SVD proposes an efficient technique to
estimate the atoms one at a time using a rank one update. The
major disadvantage of K-SVD is that it is a relatively slow
technique owing to its requirement of computing the SVD
(singular value decomposition) in every iteration. There are
other efficient optimization based approaches for dictionary
learning [33], [40] - these learn the full dictionary instead of
updating the atoms separately.

B. Deep Dictionary via Greedy Learning

The idea of extending the shallow dictionary learning for-
mulation has attracted attention in the recent years. Shen
et al. [41] propose a hierarchical discriminative dictionary
learning approach for visual categorization. They learn mul-
tiple dictionaries at different layers to capture varying scale
information, which also includes encoding information from
previous layers. Ophir et al. [42] apply dictionary learning
in the analysis domain of wavelet transform to learn sub-
dictionaries at different data scales, which are further used
for sparse coding. Thiagarajan et al. [43] develop a multi-
level approach where dictionaries after the first level are learnt
on the residual representation of the previous level. They use
the K-hyperline clustering algorithm for learning atoms of a
single dictionary. Zheng et al. [44] for tag-taxonomy produce
a dictionary for each node and concatenate them to produce

level specific dictionaries. We present our deep dictionary
learning paradigm as introduced in [45], and formulate a
greedy learning algorithm for the optimization problem.

We interpret the columns of a simple dictionary not as atoms
but as connections between the input and the representation
layer, and extent it into a deep architecture. For the first layer,
a dictionary is learnt to represent the data. In the second layer,
the representation from the first layer acts as input; it learns
a second dictionary to represent the features from first level.
This concept can be extended to deeper layers. Further, we
present how an approach of greedy level wise training can be
used for solving the deep dictionary learning problem.

A single/shallow level of dictionary learning yields a latent
representation of data and the dictionary atoms. Here, we
propose to learn latent representation of data by learning
multi-level dictionaries. The idea of learning deeper levels of
dictionaries stems from the recent success of deep learning in
various areas of machine learning [46]. As mentioned earlier,
a single layer dictionary learning generally follows a synthesis
framework, i.e. the dictionary (D1) is learnt such that the
features (Z) synthesize the data (X) along with the dictionary.
This is expressed as,

X = D1Z (5)

We propose to extend the shallow dictionary learning to
multiple layers i.e., deep dictionary learning. Mathematically,
the representation at the second layer can be written as:

X = D1φ(D2Z) (6)

here, φ represents the activation function. The activation
function is absent in the first layer because X can take any
real value. With this, we can go deeper and in that case deep
dictionary learning can be expressed as (for N layers),

X = D1φ
(
D2φ(...φ(DNZ))

)
(7)

The full optimization problem is,

min
D1,D2,...,DN ,Z

∥X −D1φ
(
D2φ(...φ(DNZ))

)
∥2F (8)

Since this is a difficult problem to solve, inspired by
the deep neural network architectures, we solve it via the
greedy approach [47]. For the first layer, Z1 is expressed as
φ
(
D2φ(...φ(DNZ))

)
; so that the problem can be formulated

as,

min
D1,Z1

||X −D1Z1||2F (9)

This can be solved by the method of alternating directions
(Equations 2 and 3). Once the coefficients for the first layer
are learnt, we formulate learning of the second layer as,

φ−1(Z1) = D2Z2, where Z2 = φ(D3...φ(DNZ)) (10)

MOD (Method of Optimizing Directions) is invoked once
again and the formulation is,
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Fig. 5: Illustrating the steps involved in the proposed deep dictionary via greedy learning based face presentation attack detection
algorithm.

min
D2,Z2

||φ−1(Z1)−D2Z2||2F (11)

The same greedy process is followed for further deeper layers
as well. Following recent studies in dictionary learning, we
next impose sparsity constraint on the representation of the
final layer. The problem that needs to be solved is,

min
D1,D2,...,DN ,Z

∥X −D1φ
(
D2φ(...φ(DNZ))

)
∥2F + λ∥Z∥1

(12)
where, λ is the regularization parameter. Till the penultimate
level, the intermediate representations are dense and hence can
be solved as explained before. The sparsity is imposed at the
final layer and hence the optimization problem at the final
layer can therefore be expressed as,

min
DN ,Z

||φ−1(ZN−1)−DNZ||2F + λ∥Z∥1 (13)

This can also be solved using alternating minimization.

Zk ← min
Z
||φ−1(ZN−1)−DNZ||2F + λ∥Z∥1 (14)

Dk ← min
Z
||φ−1(ZN−1)−DNZ||2F (15)

The dictionary update stage remains the same as before.
However, for the coefficients, we need to solve an l1-
minimization problem. This can be efficiently solved using
Iterative Soft Thresholding Algorithm [48]. Due to soft-
thresholding, the l1-norm does not yield exactly sparse co-
efficients. To get an exactly sparse representation one needs
to minimize the l0-norm. This too can be solved efficiently
using the Iterative Hard Thresholding Algorithm [49].

C. Deep Dictionary Learning based Algorithm for Face Pre-
sentation Attack Detection

Fig. 5 shows the steps involved in the proposed algorithm.
The proposed presentation attack detection algorithm con-
sists of an unsupervised feature learning step through deep
dictionaries and a supervised classification mechanism. The
deep dictionary architecture is learned using all the individual
frames of the video samples. The classifier is trained on

features of the video frames along with class labels. First, for
all the video frames, facial region is detected using the Viola
Jones [50] algorithm and segmented to a fixed size of m×n.
Next, a wavelet based illumination normalization technique
[51] is applied to the facial regions and resized to 64× 64.

1) Training Phase: Let vj be the set of all the frames of
the jth video sample. Each frame of the video sample v is
pre-processed and reshaped to a mn × 1 vector. To train the
deep dictionary, a set X = [v1, v2, ..., vN ] is created where X
is the set of all the frames of all the training video samples.
The deep dictionary is learned through the greedy level wise
algorithm on the data X .

Initially, level one dictionary coefficients D1 are alterna-
tively minimized with X to learn the pair {D1, Z1}. φ−1(Z1)
is minimized with D2 to learn {D2, Z2}. Similarly {DL, ZL}
are learned at level L. [D1, D2, ..., DL] are the learned L-
level dictionary and ZL denotes the data X in the final
projection subspace of the deep dictionary. ZL is the final
layer representation of each frame for the N video samples.

The data {ZL, y} where, y denotes the class label (genuine
or attacked) for each frame, is used for supervised training. A
linear SVM classifier [52] is learnt over {ZL, y} to obtain the
distinguishing hyperplane between the two classes.

2) Testing Phase: For a given test video sample vt (a set of
frames), the aim is to classify the entire video and each of the
individual frames as either genuine or attacked. The objective
is achieved as follows: the set of frames vt is projected through
dictionary coefficients [D1, D2, ..., DL] one level after the
other to obtain Zvt

L . Input to the classifier is Zvt

L and it provides
a score for each frame in vt. These frame scores are used
to measure the frame classification performance. Normalized
scores from all the frames are combined using sum rule to
determine the classification output of the test video.

IV. EXPERIMENTS AND RESULTS

This section summarizes the experiments performed and
the results obtained to demonstrate the efficacy of the pro-
posed algorithm. We first evaluate the performance of DDGL
algorithm on SMAD followed by showcasing the results
on data collected from some real world incidents. We next
demonstrate the results on four existing databases and compare
the performance with state-of-the-art algorithms in both intra-
database and cross-database scenarios.
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TABLE III: EER (%) on the test set of the Silicone Mask
Attack Database using different feature learning techniques.

Feature Learning Frames Videos
Deep Belief Network 16.2 16.9
Shallow Dictionary 14.9 14.6
Deep Dictionary: Under Complete 14.7 13.9
Deep Dictionary: Over Complete 14.7 12.3

A. Results on Silicone Mask Attack Database

The protocol accompanying the proposed database is fol-
lowed to obtain divisions of the train, development, and
test sets. The training data is used to learn the dictionary
architecture and classifier, while parameters are optimized
using the development set. The training and development data
together are used to learn the final classifier and samples of
the test data are predicted as genuine or attacked/fake. Five
iterations of cross validation are performed and the EER (%)
obtained on the test set is shown in Table III. The table
also summarizes the results obtained with handcrafted Local
Binary Patterns (LBP) [22] and LBP-TOP [24] features which
perform well on previous attack types such as the print,
photo, and replay-attacks [10], [22]–[24]. Since the proposed
DDGL features are inspired from representation learning via
deep learning, the performance is also compared with Deep
Belief Network (DBN) [53], which is a deep learning based
representation learning technique. The results of DBN are
computed with the same pipeline as the proposed DDGL
based spoofing algorithm. We next analyze the results of the
proposed PAD algorithm applied on the SMAD in terms of
dictionary initialization techniques and levels of dictionary for
both frame-based protocol and video-based protocol.

1) Dictionary Initialization Technique: The first step in
dictionary learning is initializing to the initial configuration
of the dictionary projection subspace. The initialization is
crucial to learning a good transformation domain D, learned
representation Z, and avoiding settling to local minima. The
dictionary may be initialized with either a matrix of random
real values, ones, the basis learned via PCA, Q from the
QR decomposition of training data, or randomly selected
face frames vectorized each to represent a principle axis of
the transformation domain. In order to understand the effect,
experiments are performed on shallow dictionary formulation.
Table IV summarizes the results with varying initialization
techniques. A difference of 1.39% and 1.53% is observed in
the equal error rates with different initialization techniques
for both frame and video based protocols, respectively. In this
research, initialization with a matrix of ones, real values leads
to better performance and hence they are used for experiments
with multilevel deep dictionaries.

2) Dictionary Levels: We train a 1-level shallow dictionary,
2-level under complete deep dictionary, and a 3-level over
complete deep dictionary. The atom architectures are shallow:
[4096 512], under-complete: [4096 2300 512], and over-
complete: [4096 8000 4096 512], respectively. The 1-level
dictionary is the traditional dictionary learning formulation
which serves as a baseline to the proposed deep architectures.

TABLE IV: The effect of dictionary initialization techniques
on the EER (%) on the Silicone Mask Database.

Initialization Techniques Frames Videos
Random Frames 14.9 14.6
PCA 14.8 14.6
QR Decomposition 16.2 16.2
Random 15.8 15.4
Ones 14.9 14.6
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Fig. 6: ROC curves of the frame based protocol with different
feature learning techniques on SMAD.

As shown in Table III, shallow dictionary performs better
than the DBN feature learning. Results indicate improvement
beyond the shallow dictionary baseline with the multilevel
deep dictionaries for the video based protocol. The 2-level
architecture performs better than the 1-level, while the 3-level
performs better than all other approaches with an EER of
12.3%. We have also performed t-test and McNemar test to
understand the statistical significance and the tests showed that
the results of shallow and deep dictionaries are statistically
different.

3) Frame based Protocol: Given a single frame of the face
of a person, the aim is to classify it as a genuine sample or
an attack attempt. A good prediction algorithm using a single
frame may be very useful in cases similar to the two cited
robbery incidents. The results of the frame based protocol are
shown in ROC curves of Fig. 6 and Table III. The dictionary
based techniques outperform the LBP, LBP-TOP, and DBN
approaches for both frame and video based protocols. With
hand-crafted features, there is a difference of 5-8% in the
EER, whereas DBN based learnt representations provide 2-
3% higher EER compared to the proposed algorithm. Fig. 7
summarizes the HTER of DBN, shallow dictionary and deep
dictionary along with standard deviation on the SMAD. The
HTERs are in the range of 14.7± 3.2% to 16± 3.8%.

4) Video based Protocol: The video based protocol mea-
sures the capability of an algorithm to classify the video
samples as genuine or attack. The normalized scores generated
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Fig. 7: HTER (%) of attack detection algorithm on frame and
video based protocols of the silicone mask attack database.
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Fig. 8: ROC curves of the video based protocol with different
feature learning techniques on SMAD.

by the classifier for all the frames of a video are used
for classification. The video based approach uses more data
which is generally feasible in most situations with the same
camera capturing multiple frames instead of one. The ROC
curves for this protocol are shown in Fig. 8. The results
show that all the algorithms are better at classifying videos
as genuine or attacked as compared to their performance
on individual frames except the Deep Belief Network based
feature learning. The maximum improvement when classifying
videos instead of frames is in the case of the over complete
deep dictionary learning (2.36%). We also have performed
classification experiments with the first 25 frames, first 50
frames, and all frames to determine the minimum number of
frames required for reliable video classification. We observe
that the HTER with 25 frames is 1.1% higher than all frames,
whereas with 50 frames, slightly higher HTER of 13.5% is
achieved (HTER of all frames is 13.1%). It can be inferred
that a video of two seconds or more (with 30 frames per second
capture) can yield good results.

TABLE V: Computational running times of proposed deep
dictionary learning based anti-spoofing algorithm.

Frames Operation Running
Time (s)

13,000 Dictionary Learning (per epoch) 8.33

Per
Frame

Illumination Normalization 0.025
Feature Extraction 0.277
Classification 0.045
Total Test 0.347

Fig. 9: New identities assumed through silicone masks as
reported in [2]–[6].

5) Computational Requirements: Table V lists the time
required for dictionary learning and frame classification. The
computational time requirements are for Matlab 2014b imple-
mentation on the Intel(R) Xeon(R) E5-2695 CPU@2.40 GHz
and 128GB RAM. The training time for a dictionary per epoch
is 8.33 seconds and the time required to determine whether
the given frame belongs to a genuine or attacked sample is
0.34 seconds including computations for illumination normal-
ization, feature extraction, and classification.

B. Results on Real World Incidents

As mentioned in the Introduction section, there have been
incidents where people have used silicone masks to assume
new identities while they indulged in unlawful activities such
as bank robberies [2]–[6], We evaluate the performance of
the proposed deep dictionary algorithm for such situations. It
allows a platform to explore the usefulness of the algorithm
outside the scope of collected databases such as the SMAD and
test its efficacy in real deployment scenarios. The trained over-
complete deep dictionary and SVM classifier models learnt
from the SMAD are used for this purpose. The algorithm is
tested on images of people wearing masks in the reported
incidents, shown in Fig. 9. It is to be noted that these
samples are not part of the SMAD. The algorithm correctly
detects cases (a), (b), (d) as attacked whereas case (c) is
misclassified as a real image. In three out of the four given
cases, the algorithm would have helped the police know that
the identities were assumed rather than real, even with only a
single image.

C. Results on Existing Presentation Attack Databases

We have also compared the performance of the proposed
algorithm with existing algorithms on four publicly available
databases and SMAD.

• For Replay Attack database, we have followed the pro-
tocol presented in [10].
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TABLE VI: Summarizing the HTERs (%) on face presentation attack databases. Results are obtained from respective research
papers and values are rounded to one decimal place. ‘-’ represents that HTER values are not available. ∗Results are computed
by the authors.

Algorithm Replay-Attack CASIA-FASD 3DMAD UVAD SMAD
LBP − TOPµ2

8,8,8,1,1,1 21.5
Erdogmus and Marcel (2014) [54] - - 0.1 - 20.8∗

Gragnaniello et al. (2015) [13] 9.4 - 0.0 - -
Wen et al. (2015) [55] 7.4 - - - -
Tirunagari et al. (2015) [56] 0.0 21.8 - - -
Pinto et al. (2015) [57] 2.8 14.3 8.0 29.9 -
Arashloo et al. (2015) [58] 0.0 - - - -
Boulkenafet et al. (2016) [59] 3.5 - - - -
Siddiqui et al.* (2016) [25] 0.0 3.8 0.0 27.6 20.4
Deep Belief Network* 1.4 10.8 0.5 30.7 19.2
Proposed DDGL 0.0 1.3 0.0 16.5 13.1

TABLE VII: Summarizing the HTER (%) for cross database experiments.

Train Database Test Database Implemented by Authors Reported Results
Proposed DDGL Siddiqui et al. [25] Pinto et al. [57] Boulkenafet et al. [59]

Replay-Attack

CASIA-FASD 27.4 44.6 50.0 37.7
3DMAD 21.6 40.0 48.0 -
UVAD 30.9 44.8 44.5 -
SMAD 32.0 50.0 - -

CASIA-FASD

Replay-Attack 22.8 35.4 34.4 30.3
3DMAD 30.2 46.4 46.0 -
UVAD 32.5 42.7 40.1 -
SMAD 31.2 48.0 - -

UVAD

Replay-Attack 26.8 40.6 42.8 -
3DMAD 28.1 46.2 44.0 -

CASIA-FASD 20.9 40.2 38.5 -
SMAD 30.0 46.8 - -

3DMAD

Replay-Attack 40.9 49.4 - -
UVAD 44.2 50.0 - -

CASIA-FASD 42.8 48.1 - -
SMAD 29.9 44.8 - -

SMAD (Video)

Replay-Attack 42.6 50.1 - -
UVAD 44.8 47.8 - -

CASIA-FASD 44.6 48.1 - -
3DMAD 14.1 28.6 - -

• The 3DMAD database [12] consists of biometric samples
of 17 subjects captured across 3 sessions. The biometric
samples with resolution 640×480 are captured using the
Microsoft Kinect for both RGB and depth data, however
we use only RGB data and performed experiments ac-
cording to the protocol defined in [54].

• The experiments on the CASIA-FASD [11] are performed
according to the protocol related to the overall database.

• For UVAD database [29], we have followed the protocol
used in [57].

• The results of SMAD are reported on the video protocol.

Table VI summarizes results of the proposed algorithm in
terms of the HTER. For comparison, eight recent and state-
of-the-art algorithms ( [13], [54], [55], [56], [57], [58], [25])
are selected and the results are reported directly from the
published papers, except in few cases as marked in Table
VI. On the 3DMAD and Replay-attack database, the proposed
algorithm and some existing algorithms are able to achieve 0%

HTER. This suggests that samples in these two databases can
be easily classified as spoof or non-spoof. On the other hand,
CASIA-FASD and UVAD are more challenging, and existing
algorithms have shown higher HTER values, particularly on
UVAD. On CASIA-FASD, the proposed algorithm yields 1.3%
HTER which is about three times better than the existing
literature. On UVAD, the reported state-of-the-result is 29.9%
[57], and the proposed algorithm improves it to 16.5%. For
completeness purposes, we have also performed experiments
with DBN and the results are reported in Table VI. The DBN
approach yields lower error on replay-attack and 3DMAD
but it does not perform well on CASIA-FASD and UVAD.
It is our assertion that, in order to achieve lower errors
for complex environment, DBN requires large amount of
training data (which also means excessive training time and
computational requirements). In contrast, DDGL efficiently
learns the dictionaries with the data available at hand, with
faster learning. Finally, we have also computed HTER values
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Fig. 10: Visualization of some dictionary atoms showcasing
that the proposed algorithm is able to learn robust features.

for the SMAD and performance is compared with two existing
algorithms [25], [54]. The results in Table VI show that the
proposed algorithm yields lower errors compared to existing
approaches.

D. Cross-Database Experiments

To evaluate the generalizability of the proposed algorithm,
we have performed cross-database experiments with all five
databases. The experiments are performed according to the
protocol proposed by Pinto et al. [57]. With five databases,
there are five sets of cross-database experiments. For example,
the first set of results are reported when the model is trained on
the Replay-attack database and tested on other four databases.
We have implemented an existing algorithm [25] for perfor-
mance comparison and Table VII shows the HTER values of
the proposed and existing algorithms. Since the experimental
protocol is same, we can directly compare the results with
Pinto et al. [57] for selected experiments. Similarly, for two
experiments, direct comparison can be performed with [59].

As shown in Table VII, the proposed algorithm consis-
tently outperforms other face presentation attack detection
approaches and is more generalizable. It is observed that
training on CASIA-FASD or UVAD databases generally yields
lower error on other test databases. This is primary due to the
fact that these two databases have multiple attack variations
and training on them helps in achieving better features and
classification decision boundaries. Existing algorithms also
show similar trend; however, they yield two times more error
compared to the proposed algorithm. On using SMAD for
training and 3DMAD for testing, HTER of 14.1% is observed.
We believe that this is due to the fact that SMAD has more
variations than 3DMAD and training on SMAD helps in
achieving better representation and improved classification
results on 3DMAD. On training with 3DMAD, the proposed
algorithm shows best cross-database test results on SMAD;
however, it is not able to generalize as well in the reverse case.
On training with either 3DMAD or SMAD, higher errors are
observed on Replay, CASIA-FASD, and UVAD. This is due
to two reasons: (i) availability of limited training data and (ii)
very large gap between types of attacks in these cross-database
settings.

Fig. 11: An illustration of misclassifications by the Deep
Dictionary based PAD algorithm.

E. Discussion

In the proposed deep dictionary learning based approach, we
are learning full dictionary at each level and as shown in Fig.
10, robust features are extracted from multiple levels. Using
this approach, abstract representation is learnt at deeper levels
which helps in better discrimination using SVM classifier.
Moreover, layer-wise learning aids in achieving convergence
at each layer. Due to these features of the proposed algorithm,
experimental results showcase the superior performance of
the proposed feature representation algorithm for face pre-
sentation attack detection. We experimentally observe that
unlike deep learning approaches, the proposed formulation
does not require very large amount of training data to achieve
higher performance and therefore lower HTERs are obtained
on smaller databases as well. Computationally, the proposed
algorithm is fast at both training and testing stages which also
showcases the usefulness in real world cases. While the results
are highly encouraging, there are some misclassified cases as
well. As shown in Fig. 11, the silicon mask attack database
contains images which have combined variations due to pose,
expression, and illumination. These confounding variations
sometimes cause errors in correctly discriminating between
a mask attack and genuine sample. Finally, the experiments
also illustrate that the proposed algorithm is also robust to
cross-database variations and hence generalizable.

V. CONCLUSION AND FUTURE WORK

Advancements and popularity of biometric systems have
instigated widespread usage in civil and law enforcement
applications. However, this also instigates attempts to deceive
the biometric systems by presentation attacks which pose a
significant threat to successful implementation of the tech-
nology. This paper introduces the problem of silicone mask
based face attack and presents one-of-a-kind Silicone Mask
Attack Database. In order to address this arduous research
challenge, the paper also presents a presentation attack detec-
tion algorithm using a novel formulation of multilevel deep
dictionary via greedy learning. Experimental results on the
proposed silicone mask database and four existing databases
show that the proposed algorithm outperforms several state-
of-the-art attack detection algorithms. It is also observed that
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the proposed method performs well even in the presence of
confounding unconstrained environment and detects attacks
from real world silicone mask attack samples along with
replay-attack, 3D mask attack, CASIA, and UVA databases.
It is our assertion that the availability of silicone mask attack
database can initiate research efforts in building algorithms
for unconstrained face presentation attack detection. As a
future research direction, we are currently working towards
improving the cross-database performance of the proposed
presentation attack detection algorithm. Moreover, the pro-
posed algorithm can also be extended towards presentation
attack detection in other biometric modalities such as detecting
contact lens and print attack in iris [9], [60].
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